DUSP16 ablation arrests the cell cycle and induces cellular senescence

DUSP16 消融可阻止细胞周期并诱导细胞衰老

阅读:6
作者:Haibin Zhang, Hai Zheng, Wenjing Mu, Zhiying He, Bo Yang, Yuan Ji, Lijian Hui

Abstract

Dual-specificity phosphatases (DUSPs) are a family of protein phosphatases that dephosphorylate both phosphotyrosine and phosphoserine/phosphothreonine residues. DUSPs are de-regulated in many human diseases, including cancers. However, the function of DUSPs in tumorigenesis remains largely unknown. Here, using short hairpin RNA-based gene knockdown, we found that several members of the DUSP family play critical roles in regulating cell proliferation. In particular, we showed that DUSP16 ablation leads to a G1/S transition arrest, reduced incorporation of 5-bromodeoxyuridine, enhanced senescence-associated β-galactosidase activity, and formation of senescence-associated heterochromatic foci. Mechanistically, DUSP16 silencing causes cellular senescence by activating the tumor suppressors p53 and Rb. The phosphatase activity of DUSP16 is necessary for antagonizing cellular senescence. Importantly, the expression levels of DUSP16 are up-regulated in human liver cancers, and are positively correlated with tumor cell proliferation. Taken together, our findings indicate that DUSP16 plays a role in tumorigenesis by protecting cancer cells from senescence.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。