Novel purine thioglycoside analogs: synthesis, nanoformulation and biological evaluation in in vitro human liver and breast cancer models

新型嘌呤硫糖苷类似物:合成、纳米制剂及体外人肝癌和乳腺癌模型中的生物学评价

阅读:5
作者:Mamdouh A Abu-Zaied, Samah A Loutfy, Ashraf E Hassan, Galal H Elgemeie

Background

A series of novel pyrazolopyrimidine and pyrazololpyridine thioglycosides were synthesized and confirmed via their spectral analyses.

Conclusion

A novel series of pyrazolopyrimidine thioglycosides and pyrazolopyridine thioglycosides were synthesized. Nanoformulation of compound 14 into chitosan nanoparticles demonstrated anticancer activity and can be used as a drug delivery system, but further studies are still required.

Methods

The most promising compound was subjected to a nanoformulation by its encapsulation into chitosan nanoparticles to increase its anti-cancerous activity. Nanoformulation was confirmed by TEM and FT-IR to ensure encapsulation and screened for their cytotoxicity against Huh-7 and Mcf-7 cells using MTT colorimetric assay and morphological examination. Genotoxic effect was performed by cellular DNA fragmentation assay. Simulated CompuSyn software (linear interaction effect) was conducted to predict the possible synergistic effect of nanocomposite as anticancerous activity. Apoptotic effect was further analyzed by detection of apoptotic proteins using ELISA assay.

Purpose

To evaluate the effect of these anti-metabolic compounds against proliferation of Huh-7 and Mcf-7 as in vitro models of human liver and breast cancers, respectively. Vero cells were used as an example of normal green monkey kidney cells.

Results

The nano preparation was successfully prepared by encapsulation of compound 14 into chitosan nanoparticles, controlled to a size at 105 nm and zeta charges at 40.2 mV. Treatment of Huh-7 and Mcf-7 showed that compound 14 was the most cytotoxic compound on both cancer cell lines where IC50 was 24.59 (9.836 μg/mL) and 12.203 (4.8812 μg/mL) on Huh-7 and Mcf-7 respectively. But IC50 of the nano preparation was 37.19 and 30.68 μg/mL on Huh-7 and Mcf-7, respectively, indicating its aggressiveness on human breast cancer cells as confirmed by DNA fragmentation assay and theoretically by CompuSyn tool.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。