The landscape of super-enhancer regulates remote target gene transcription through loop domains in adipose tissue of pig

超级增强子通过猪脂肪组织中的环状结构域调控远程靶基因转录

阅读:7
作者:Lin Yu, Tengda Huang, Siqi Liu, Jingsu Yu, Menglong Hou, Songtao Su, Tianyu Jiang, Xiangling Li, Yixing Li, Turtushikh Damba, Lei Zhou, Yunxiao Liang

Background

A super-enhancer (SE) is a huge cluster of multiple enhancers that control the key genes for cell identity and function. The rise of advanced chromatin immunoprecipitation sequencing (ChIP-seq) technology such as Cleavage Under Targets and Tagmentation (CUT&Tag) allows more SEs to be discovered. However, SE studies in Luchuan and Duroc pigs are very rare in animal husbandry.

Conclusions

This work enabled us to obtain hundreds of SEs from Luchuan and Duroc pigs. Our model provides a new method for predicting the SE remote target genes based on loop domains, and to further explore the potential role of super-enhancer in the regulation of fat metabolism.

Results

We used the CUT&Tag technique to identify 145 and 378 SEs from the adipose tissues of Luchuan and Duroc pigs, respectively. There were significant differences in the peak coverage ratio of SE peaks in the gene promoter region between the two breeds. Not only that, peak signals at the start and end point of the SE peak profile showed obvious spikes. The proximal target genes of SE were highly expressed compared with the background genes and the typical enhancer target genes. Subsequently, in conjoint analysis with high-throughput chromosome conformation capture sequencing (Hi-C seq) data, we predicted the remote regulatory genes of SE and found that their expression level was related to the distance of SE extended to the loop's anchor, but not the length of loops. According to our prediction model, SEs can maintain promoter accessibility of partial remote target genes through loop domains. Finally, a batch of SEs closely related to fat metabolism traits were obtained by performing a coalition analysis of quantitative trait loci and SE data. Conclusions: This work enabled us to obtain hundreds of SEs from Luchuan and Duroc pigs. Our model provides a new method for predicting the SE remote target genes based on loop domains, and to further explore the potential role of super-enhancer in the regulation of fat metabolism.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。