Deficiency of macrophage migration inhibitory factor attenuates tau hyperphosphorylation in mouse models of Alzheimer's disease

巨噬细胞移动抑制因子的缺乏会减弱阿尔茨海默病小鼠模型中的 tau 过度磷酸化

阅读:5
作者:Shu-Qin Li, Yang Yu, Jin-Zhao Han, Ding Wang, Jin Liu, Feng Qian, Guo-Huang Fan, Richard Bucala, Richard D Ye

Background

Pathological features of Alzheimer's disease (AD) include aggregation of amyloid beta (Aβ) and tau protein. Macrophage migration inhibitory factor (MIF), a proinflammatory cytokine, has been implicated in the toxicity of aggregated Aβ. It remains unclear whether MIF affects hyperphosphorylation and aggregation of tau.

Conclusions

These results suggest that MIF deficiency is associated with reduced astrocyte activation and tau hyperphosphorylation in the mouse AD models tested. Inhibition of MIF and MIF-induced astrocyte activation may be useful in AD prevention and therapy.

Methods

The effects of MIF deficiency in tau hyperphosphorylation were examined in Mif (-/-) mice receiving intracerebroventricular (ICV) injection of streptozotocin (STZ) and in APP/PS1 transgenic mice mated with Mif (-/-) mice. MIF expression and astrocyte activation were evaluated in ICV-STZ mice using immunofluorescence staining. Cultured primary astrocytes were treated with high glucose to mimic STZ function in vitro, and the condition medium (CM) was collected. The level of tau hyperphosphorylation in neurons treated with the astrocyte CM was determined using Western blotting.

Results

MIF deficiency attenuated tau hyperphosphorylation in mice. ICV injection of STZ increased astrocyte activation and MIF expression in the hippocampus. MIF deficiency attenuated astrocyte activation in ICV-STZ mice. CM from high glucose-treated WT astrocytes increased tau hyperphosphorylation in cultured primary neurons, an effect absent from Mif (-/-) astrocytes and WT astrocytes treated with the MIF inhibitor ISO-1. ISO-1 had no direct effect on tau phosphorylation in cultured primary neurons. Conclusions: These results suggest that MIF deficiency is associated with reduced astrocyte activation and tau hyperphosphorylation in the mouse AD models tested. Inhibition of MIF and MIF-induced astrocyte activation may be useful in AD prevention and therapy.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。