Saccharomyces cerevisiae lysophospholipid acyltransferase, Lpt1, requires Asp146 and Glu297 for catalysis

酿酒酵母溶血磷脂酰基转移酶 Lpt1 需要 Asp146 和 Glu297 进行催化

阅读:4
作者:Paul Renauer, Nour Nasiri, Peter Oelkers

Abstract

The esterification of lysophospholipids contributes to phospholipid synthesis, remodeling, and scavenging. Acyl-CoA-dependent lysophospholipid acyltransferase activity with broad substrate use is mediated by Saccharomyces cerevisiae Lpt1p. We sought to identify Lpt1p active site amino acids besides the histidine conserved among homologs and repeatedly found to be required for catalysis. In vitro Lpt1p assays with amino acid modifying agents implicated aspartate, glutamate, and lysine as active site residues. Threonine and tyrosine were not ruled out. Aligning the primary structures of functionally characterized LPT1 homologs from fungi, plants, and animals identified 11 conserved aspartate, glutamate, lysine, threonine, and tyrosine residues. Site-directed mutagenesis of the respective codons showed that changing D146 and E297 abolished activity without abolishing protein expression. The mechanism of Lpt1p was further analyzed using monounsaturated acyl-CoA species with different double bond positions. Delta 6 species showed the highest catalytic efficiency. We propose that D146 and E297 act in conjunction with H382 as nucleophiles that attack the hydroxyl group in lysophospholipids in a general acid/base mechanism. This sequential mechanism provides a precedent for other members of the membrane bound O-acyltransferase family. Also, Lpt1p optimally orients acyl-CoA substrates with 7.5 Å between a double bond and the thioester bond.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。