Hexokinase 2-dependent hyperglycolysis driving microglial activation contributes to ischemic brain injury

己糖激酶 2 依赖性高糖酵解驱动小胶质细胞活化导致缺血性脑损伤

阅读:5
作者:Yuan Li, Bingzheng Lu, Longxiang Sheng, Zhu Zhu, Hongjiaqi Sun, Yuwei Zhou, Yang Yang, Dongdong Xue, Wenli Chen, Xuyan Tian, Yun Du, Min Yan, Wenbo Zhu, Fan Xing, Kai Li, Suizhen Lin, Pengxin Qiu, Xingwen Su, Yijun Huang, Guangmei Yan, Wei Yin

Abstract

Hyperglycolysis, observed within the penumbra zone during brain ischemia, was shown to be detrimental for tissue survival because of lactate accumulation and reactive oxygen species overproduction in clinical and experimental settings. Recently, mounting evidence suggests that glycolytic reprogramming and induced metabolic enzymes can fuel the activation of peripheral immune cells. However, the possible roles and details regarding hyperglycolysis in neuroinflammation during ischemia are relatively poorly understood. Here, we investigated whether overactivated glycolysis could activate microglia and identified the crucial regulators of neuroinflammatory responses in vitro and in vivo. Using BV 2 and primary microglial cultures, we found hyperglycolysis and induction of the key glycolytic enzyme hexokinase 2 (HK2) were essential for microglia-mediated neuroinflammation under hypoxia. Mechanistically, HK2 up-regulation led to accumulated acetyl-coenzyme A, which accounted for the subsequent histone acetylation and transcriptional activation of interleukin (IL)-1β. The inhibition and selective knockdown of HK2 in vivo significantly protected against ischemic brain injury by suppressing microglial activation and IL-1β production in male Sprague-Dawley rats subjected to transient middle cerebral artery occlusion (MCAo) surgery. We provide novel insights for HK2 specifically serving as a neuroinflammatory determinant, thus explaining the neurotoxic effect of hyperglycolysis and indicating the possibility of selectively targeting HK2 as a therapeutic strategy in acute ischemic stroke.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。