Synthesis of T2-weighted images from proton density images using a generative adversarial network in a temporomandibular joint magnetic resonance imaging protocol

在颞下颌关节磁共振成像协议中使用生成对抗网络从质子密度图像合成 T2 加权图像

阅读:7
作者:Chena Lee, Eun-Gyu Ha, Yoon Joo Choi, Kug Jin Jeon, Sang-Sun Han

Conclusion

The application of pT2 images for a TMJ MRI protocol useful for diagnosis, although the image quality of pT2 was not fully satisfactory. Further research is expected to enhance pT2 quality.

Methods

From January to November 2019, MRI scans for TMJ were reviewed and 308 imaging sets were collected. For training, 277 pairs of PD- and T2-WI sagittal TMJ images were used. Transfer learning of the pix2pix GAN model was utilized to generate T2-WI from PD-WI. Model performance was evaluated with the structural similarity index map (SSIM) and peak signal-to-noise ratio (PSNR) indices for 31 predicted T2-WI (pT2). The disc position was clinically diagnosed as anterior disc displacement with or without reduction, and joint effusion as present or absent. The true T2-WI-based diagnosis was regarded as the gold standard, to which pT2-based diagnoses were compared using Cohen's ĸ coefficient.

Purpose

This study proposed a generative adversarial network (GAN) model for T2-weighted image (WI) synthesis from proton density (PD)-WI in a temporomandibular joint (TMJ) magnetic resonance imaging (MRI) protocol. Materials and

Results

The mean SSIM and PSNR values were 0.4781(±0.0522) and 21.30(±1.51) dB, respectively. The pT2 protocol showed almost perfect agreement (ĸ=0.81) with the gold standard for disc position. The number of discordant cases was higher for normal disc position (17%) than for anterior displacement with reduction (2%) or without reduction (10%). The effusion diagnosis also showed almost perfect agreement (ĸ=0.88), with higher concordance for the presence (85%) than for the absence (77%) of effusion.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。