Carnosine decreased oxidation and glycation products in serum and liver of high-fat diet and low-dose streptozotocin-induced diabetic rats

肌肽降低高脂饮食和低剂量链脲佐菌素诱发的糖尿病大鼠血清和肝脏中的氧化和糖化产物

阅读:5
作者:Abdurrahman Fatih Aydın, İlknur Bingül, Canan Küçükgergin, Işın Doğan-Ekici, Semra Doğru Abbasoğlu, Müjdat Uysal

Abstract

High-fat diet (HFD) and low-dose streptozotocin (STZ)-treated rats provide useful animal model for type II diabetes mellitus. Oxidative stress and advanced glycation end products (AGEs) play a role in the development of diabetic complications. Carnosine (CAR) has anti-oxidant and anti-glycating properties. We investigated the effects of CAR on oxidation and glycation products in HFD+STZ rats. Rats were fed with HFD (60% of total calories from fat) for 4 weeks, and then a single dose of STZ (40 mg/kg; i.p.) was applied. Rats with blood glucose levels above 200 mg/dl were fed with HFD until the end of the 12th week. CAR (250 mg/kg body weight; i.p.; five times a week) was administered to the rats for the last four weeks. CAR significantly decreased serum triglyceride (TG) (57.7%), cholesterol (35.6%) levels and hepatic marker enzyme activities of HFD+STZ rats. It significantly reduced serum reactive oxygen species (ROS) (23.7%), AGEs (13.4%) and advanced oxidized protein products (AOPP) (35.9%) and hepatic TG (59%), ROS (26%), malondialdehyde (MDA) (11.5%), protein carbonyl (PC) (19.2%) and AGE (20.2%) levels. Liver steatosis and hepatocyte ballooning were also significantly reduced. However, CAR treatment did not alter serum glucose and blood glycated haemoglobin and hepatic anti-oxidant enzyme activities/mRNA expressions in HFD+STZ rats. Our results indicate that CAR decreased accumulation of oxidation and glycation products, such as MDA, AGE, AOPP and PC in the serum and liver and ameliorated hepatic dysfunction in HFD+STZ rats. This effect may be related to its anti-oxidative, anti-glycating, and anti-lipogenic potential.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。