Horses with equine recurrent uveitis have an activated CD4+ T-cell phenotype that can be modulated by mesenchymal stem cells in vitro

患有马复发性葡萄膜炎的马具有活化的 CD4+ T 细胞表型,可通过体外间充质干细胞进行调节

阅读:9
作者:Laurel K Saldinger, Seldy G Nelson, Rebecca R Bellone, Mary Lassaline, Maura Mack, Naomi J Walker, Dori L Borjesson

Abstract

Equine recurrent uveitis (ERU) is an immune-mediated disease causing repeated or persistent inflammatory episodes which can lead to blindness. Currently, there is no cure for horses with this disease. Mesenchymal stem cells (MSCs) are effective at reducing immune cell activation in vitro in many species, making them a potential therapeutic option for ERU. The objectives of this study were to define the lymphocyte phenotype of horses with ERU and to determine how MSCs alter T-cell phenotype in vitro. Whole blood was taken from 7 horses with ERU and 10 healthy horses and peripheral blood mononuclear cells were isolated. The markers CD21, CD3, CD4, and CD8 were used to identify lymphocyte subsets while CD25, CD62L, Foxp3, IFNγ, and IL10 were used to identify T-cell phenotype. Adipose-derived MSCs were expanded, irradiated (to control proliferation), and incubated with CD4+ T-cells from healthy horses, after which lymphocytes were collected and analyzed via flow cytometry. The percentages of T-cells and B-cells in horses with ERU were similar to normal horses. However, CD4+ T-cells from horses with ERU expressed higher amounts of IFNγ indicating a pro-inflammatory Th1 phenotype. When co-incubated with MSCs, activated CD4+ T-cells reduced expression of CD25, CD62L, Foxp3, and IFNγ. MSCs had a lesser ability to decrease activation when cell-cell contact or prostaglandin signaling was blocked. MSCs continue to show promise as a treatment for ERU as they decreased the CD4+ T-cell activation phenotype through a combination of cell-cell contact and prostaglandin signaling.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。