Identifying SARS-CoV-2 antiviral compounds by screening for small molecule inhibitors of Nsp5 main protease

通过筛选 Nsp5 主蛋白酶的小分子抑制剂来鉴定 SARS-CoV-2 抗病毒化合物

阅读:5
作者:Jennifer C Milligan #, Theresa U Zeisner #, George Papageorgiou, Dhira Joshi, Christelle Soudy, Rachel Ulferts, Mary Wu, Chew Theng Lim, Kang Wei Tan, Florian Weissmann, Berta Canal, Ryo Fujisawa, Tom Deegan, Hema Nagaraj, Ganka Bineva-Todd, Clovis Basier, Joseph F Curran, Michael Howell, Rupert Bea

Abstract

The coronavirus 2019 (COVID-19) pandemic, caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), spread around the world with unprecedented health and socio-economic effects for the global population. While different vaccines are now being made available, very few antiviral drugs have been approved. The main viral protease (nsp5) of SARS-CoV-2 provides an excellent target for antivirals, due to its essential and conserved function in the viral replication cycle. We have expressed, purified and developed assays for nsp5 protease activity. We screened the nsp5 protease against a custom chemical library of over 5000 characterised pharmaceuticals. We identified calpain inhibitor I and three different peptidyl fluoromethylketones (FMK) as inhibitors of nsp5 activity in vitro, with IC50 values in the low micromolar range. By altering the sequence of our peptidomimetic FMK inhibitors to better mimic the substrate sequence of nsp5, we generated an inhibitor with a subnanomolar IC50. Calpain inhibitor I inhibited viral infection in monkey-derived Vero E6 cells, with an EC50 in the low micromolar range. The most potent and commercially available peptidyl-FMK compound inhibited viral growth in Vero E6 cells to some extent, while our custom peptidyl FMK inhibitor offered a marked antiviral improvement.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。