Sub-ohm vaping increases the levels of carbonyls, is cytotoxic, and alters gene expression in human bronchial epithelial cells exposed at the air-liquid interface

亚欧姆电子烟会增加羰基的含量,具有细胞毒性,并改变暴露在气液界面的人类支气管上皮细胞的基因表达

阅读:4
作者:Alexandra Noël, Ekhtear Hossain, Zakia Perveen, Hasan Zaman, Arthur L Penn

Background

Exposure to electronic-cigarette (e-cig) aerosols induces potentially fatal e-cig or vaping-associated lung injury (EVALI). The cellular and molecular mechanisms underlying these effects, however, are unknown. We used an air-liquid interface (ALI) in vitro model to determine the influence of two design characteristics of third-generation tank-style e-cig devices-resistance and voltage-on (1) e-cig aerosol composition and (2) cellular toxicity.

Conclusion

The production of high levels of carbonyls may be flavor specific. Overall, inhaling e-cig aerosols produced under 'sub-ohm' conditions is detrimental to lung epithelial cells, potentially via mechanisms associated with OS. This information could help policymakers take the necessary steps to prevent the manufacturing of sub-ohm atomizers for e-cig devices.

Methods

Human bronchial epithelial cells (H292) were exposed to either butter-flavored or cinnamon-flavored e-cig aerosols at the ALI in a Vitrocell exposure system connected to a third-generation e-cig device. Exposures were conducted following a standard vaping topography profile for 2 h per day, for 1 or 3 consecutive days. 24 h after ALI exposures cellular and molecular outcomes were assessed.

Results

We found that butter-flavored e-cig aerosol produced under 'sub-ohm' conditions (< 0.5 Ω) contains high levels of carbonyls (7-15 μg/puff), including formaldehyde, acetaldehyde and acrolein. E-cig aerosol produced under regular vaping conditions (resistance > 1 Ω and voltage > 4.5 V), contains lower carbonyl levels (< 2 μg/puff). We also found that the levels of carbonyls produced in the cinnamon-flavored e-cig aerosols were much lower than that of the butter-flavored aerosols. H292 cells exposed to butter-flavored or cinnamon-flavored e-cig aerosol at the ALI under 'sub-ohm' conditions for 1 or 3 days displayed significant cytotoxicity, decreased tight junction integrity, increased reactive oxygen species production, and dysregulated gene expression related to biotransformation, inflammation and oxidative stress (OS). Additionally, the cinnamon-flavored e-cig aerosol induced pro-oxidant effects as evidenced by increases in 8-hydroxy-2-deoxyguanosine protein levels. Moreover, we confirmed the involvement of OS as a toxicity process for cinnamon-flavored e-cig aerosol by pre-treating the cells with N-acetyl cysteine (NAC), an antioxidant that prevented the cells from the OS-mediated damage induced by the e-cig aerosol.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。