CEPT1-Mediated Phospholipogenesis Regulates Endothelial Cell Function and Ischemia-Induced Angiogenesis Through PPARα

CEPT1 介导的磷脂生成通过 PPARα 调节内皮细胞功能和缺血诱导的血管生成

阅读:3
作者:Mohamed A Zayed, Xiaohua Jin, Chao Yang, Larisa Belaygorod, Connor Engel, Kshitij Desai, Nikolai Harroun, Omar Saffaf, Bruce W Patterson, Fong-Fu Hsu, Clay F Semenkovich

Abstract

De novo phospholipogenesis, mediated by choline-ethanolamine phosphotransferase 1 (CEPT1), is essential for phospholipid activation of transcription factors such as peroxisome proliferator-activated receptor α (PPARα) in the liver. Fenofibrate, a PPARα agonist and lipid-lowering agent, decreases amputation incidence in patients with diabetes. Because we previously observed that CEPT1 is elevated in carotid plaque of patients with diabetes, we evaluated the role of CEPT1 in peripheral arteries and PPARα phosphorylation (Ser12). CEPT1 was found to be elevated in diseased lower-extremity arterial intima of individuals with peripheral arterial disease and diabetes. To evaluate the role of Cept1 in the endothelium, we engineered a conditional endothelial cell (EC)-specific deletion of Cept1 via induced VE-cadherin-CreERT2-mediated recombination (Cept1Lp/LpCre +). Cept1Lp/LpCre + ECs demonstrated decreased proliferation, migration, and tubule formation, and Cept1Lp/LpCre + mice had reduced perfusion and angiogenesis in ischemic hind limbs. Peripheral ischemic recovery and PPARα signaling were further compromised by streptozotocin-induced diabetes and ameliorated by feeding fenofibrate. Cept1 endoribonuclease-prepared siRNA decreased PPARα phosphorylation in ECs, which was rescued with fenofibrate but not PC16:0/18:1. Unlike Cept1Lp/LpCre + mice, Cept1Lp/LpCre + Ppara -/- mice did not demonstrate hind-paw perfusion recovery after feeding fenofibrate. Therefore, we demonstrate that CEPT1 is essential for EC function and tissue recovery after ischemia and that fenofibrate rescues CEPT1-mediated activation of PPARα.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。