Bismuth ions inhibit the biological activity of non-amidated gastrins in vivo

铋离子抑制体内非酰胺化胃泌素的生物活性

阅读:4
作者:Suzana Kovac, Su-Wen Loh, Shamilah Lachal, Arthur Shulkes, Graham S Baldwin

Abstract

The peptide hormone gastrin binds two ferric ions with high affinity, and iron binding is essential for the biological activity of non-amidated gastrins in vitro and in vivo. Bi3+ ions also bind to glycine-extended gastrin17 (Ggly), but inhibit Ggly-induced cell proliferation and migration in gastrointestinal cell lines in vitro. The aims of the present study were firstly, to establish the mechanism by which Bi3+ ions inhibit the binding of Fe3+ ions to Ggly, and secondly, to test the effect of Bi3+ ions on the activity of non-amidated gastrins in vivo. The interaction between Bi3+ ions, Fe3+ ions and Ggly was investigated by ultraviolet spectroscopy. The effect of Bi3+ ions on colorectal mucosal proliferation was measured in three animal models. In vitro in the presence of Bi3+ ions the affinity of Fe3+ ions for Ggly was substantially reduced; the data was better fitted by a mixed, rather than a competitive, inhibition model. In rats treated with Ggly alone proliferation in the rectal mucosa was increased by 318%, but was reduced to control values (p < 0.001) in animals receiving oral bismuth plus Ggly. Proliferation in the colonic mucosa of mice overexpressing Ggly or progastrin was significantly greater than in wild-type mice, but was no greater than control (p < 0.01) in animals receiving oral bismuth. Thus a reduction in the binding of Fe3+ ions to Ggly and progastrin in the presence of Bi3+ ions is a likely explanation for the ability of oral bismuth to block the biological activity of non-amidated gastrins in vivo.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。