Arg375 tunes tetrahydrobiopterin functions and modulates catalysis by inducible nitric oxide synthase

Arg375 调节四氢生物蝶呤功能并通过诱导型一氧化氮合酶调节催化作用

阅读:3
作者:Zhi-Qiang Wang, Jesús Tejero, Chin-Chuan Wei, Mohammad Mahfuzul Haque, Jerome Santolini, Mohammed Fadlalla, Ashis Biswas, Dennis J Stuehr

Abstract

NO synthase enzymes (NOS) support unique single-electron transitions of a bound H(4)B cofactor during catalysis. Previous studies showed that both the pterin structure and surrounding protein residues impact H(4)B redox function during catalysis. A conserved Arg residue (Arg375 in iNOS) forms hydrogen bonds with the H(4)B ring. In order to understand the role of this residue in modulating the function of H(4)B and overall NO synthesis of the enzyme, we generated and characterized three mutants R375D, R375K and R375N of the oxygenase domain of inducible NOS (iNOSoxy). The mutations affected the dimer stability of iNOSoxy and its binding affinity toward substrates and H(4)B to varying degrees. Optical spectra of the ferric, ferrous, ferrous dioxy, ferrous-NO, ferric-NO, and ferrous-CO forms of each mutant were similar to the wild-type. However, mutants displayed somewhat lower heme midpoint potentials and faster ferrous heme-NO complex reactivity with O(2). Unlike the wild-type protein, mutants could not oxidize NOHA to nitrite in a H(2)O(2)-driven reaction. Mutation could potentially change the ferrous dioxy decay rate, H(4)B radical formation rate, and the amount of the Arg hydroxylation during single turnover Arg hydroxylation reaction. All mutants were able to form heterodimers with the iNOS G450A full-length protein and displayed lower NO synthesis activities and uncoupled NADPH consumption. We conclude that the conserved residue Arg375 (1) regulates the tempo and extent of the electron transfer between H(4)B and ferrous dioxy species and (2) controls the reactivity of the heme-based oxidant formed after electron transfer from H(4)B during steady state NO synthesis and H(2)O(2)-driven NOHA oxidation. Thus, Arg375 modulates the redox function of H(4)B and is important in controlling the catalytic function of NOS enzymes.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。