VDR activity is differentially affected by Hic-5 in prostate cancer and stromal cells

Hic-5 在前列腺癌和基质细胞中对 VDR 活性有不同的影响

阅读:5
作者:Joshua D Solomon, Marjet D Heitzer, Teresa T Liu, Jan H Beumer, Robert A Parise, Daniel P Normolle, Damien A Leach, Grant Buchanan, Donald B DeFranco

Abstract

Patients with prostate cancer treated with androgen deprivation therapy (ADT) eventually develop castrate-resistant prostate cancer (CRPC). 1,25-Dihydroxyvitamin D3 (1,25D3/calcitriol) is a potential adjuvant therapy that confers antiproliferative and pro-differentiation effects in vitro, but has had mixed results in clinical trials. The impact of the tumor microenvironment on 1,25D3 therapy in patients with CRPC has not been assessed. Transforming growth factor β (TGFβ), which is associated with the development of tumorigenic "reactive stroma" in prostate cancer, induced vitamin D3 receptor (VDR) expression in the human WPMY-1 prostate stromal cell line. Similarly, TGFβ enhanced 1,25D3-induced upregulation of CYP24A1, which metabolizes 1,25D3 and thereby limits VDR activity. Ablation of Hic-5, a TGFβ-inducible nuclear receptor coregulator, inhibited basal VDR expression, 1,25D3-induced CYP24A1 expression and metabolism of 1,25D3 and TGFβ-enhanced CYP24A1 expression. A Hic-5-responsive sequence was identified upstream (392-451 bp) of the CYP24A1 transcription start site that is occupied by VDR only in the presence of Hic-5. Ectopic expression of Hic-5 sensitized LNCaP prostate tumor cells to growth-inhibitory effects of 1,25D3 independent of CYP24A1. The sensitivity of Hic-5-expressing LNCaP cells to 1,25D3-induced growth inhibition was accentuated in coculture with Hic-5-ablated WPMY-1 cells. Therefore, these findings indicate that the search for mechanisms to sensitize prostate cancer cells to the antiproliferative effects of VDR ligands needs to account for the impact of VDR activity in the tumor microenvironment. Implications: Hic-5 acts as a coregulator with distinct effects on VDR transactivation, in prostate cancer and stromal cells, and may exert diverse effects on adjuvant therapy designed to exploit VDR activity in prostate cancer.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。