YAP1 controls the N-cadherin-mediated tumor-stroma interaction in melanoma progression

YAP1 控制黑色素瘤进展中的 N-钙粘蛋白介导的肿瘤-基质相互作用

阅读:4
作者:Yao Xio, Lilni Zhou, Thomas Andl, Yuhang Zhang

Abstract

Epithelial-to-mesenchymal transition (EMT) is crucial for melanoma cells to escape keratinocyte control, invade underlying dermal tissues, and metastasize to distant organs. The hallmark of EMT is the switch from epithelial cadherin (E-cadherin) to neural cadherin (N-cadherin), allowing melanoma cells to form a homotypic N-cadherin-mediated adhesion with stromal fibroblasts. However, how "cadherin switching" is initiated, maintained, and regulated in melanoma remains unknown. Here, we show that upon Yes-associated protein 1 (YAP1) ablation in cancer-associated fibroblasts (CAFs), the progression of a BRAF-mutant mouse melanoma was significantly suppressed in vivo, and overexpressing YAP1 in CAFs accelerated melanoma growth. CAFs require the YAP1 function to proliferate, migrate, remodel the cytoskeletal machinery and matrix, and promote cancer cell invasion. By RNA-Seq, N-cadherin was identified as a major downstream effector of YAP1 signaling in CAFs. YAP1 silencing led to N-cadherin downregulation in CAFs, which subsequently induced the downregulation of N-cadherin in neighboring melanoma cells. N-cadherin downregulation inhibited the PI3K-AKT signaling pathway in melanoma cells and suppressed melanoma growth in vivo, supporting the role of N-cadherin as an adhesive and signaling molecule in melanoma cells. This finding suggests that YAP1 depletion in CAFs induces the downregulation of p-AKT signaling in melanoma cells through the N-cadherin-mediated interaction between melanoma cells and CAFs. Importantly, our data underscore that CAFs can regulate N-cadherin-mediated interactions with melanoma cells. Thus, disentangling cadherin-mediated cell-cell interactions can potentially disrupt tumor-stroma interactions and reverse the tumor cell invasive phenotype.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。