Attenuated airway hyperresponsiveness and mucus secretion in HDM-exposed Igf1r-deficient mice

HDM 暴露的 Igf1r 缺陷小鼠的气道高反应性和粘液分泌减弱

阅读:4
作者:S Piñeiro-Hermida, J A Gregory, I P López, R Torrens, C Ruíz-Martínez, M Adner, J G Pichel

Background

Asthma is a common chronic lung disease characterized by airflow obstruction, airway hyperresponsiveness (AHR), and airway inflammation. IGFs have been reported to play a role in asthma, but little is known about how the insulin-like growth factor 1 receptor (IGF1R) affects asthma pathobiology.

Conclusions

Herein, we demonstrate by the first time that the Igf1r plays an important role in murine asthma, mediating both AHR and mucus secretion after HDM exposure. Thus, our study identifies IGF1R as a potential therapeutic target, not only for asthma but also for hypersecretory airway diseases.

Methods

Female Igf1r-deficient and control mice were intranasally challenged with house dust mite (HDM) extract or PBS five days per week for four weeks. Lung function measurements, and bronchoalveolar lavage fluid (BALF), serum, and lungs were collected on day 28 for further cellular, histological, and molecular analysis.

Results

Following HDM exposure, the control mice responded with a marked AHR and airway inflammation. The Igf1r-deficient mice exhibited an increased expression of the IGF system and surfactant genes, which were decreased in a similar manner for control and Igf1r-deficient mice after HDM exposure. On the other hand, the Igf1r-deficient mice exhibited no AHR, and a selective decrease in blood and BALF eosinophils, lung Il13 levels, collagen, and smooth muscle, as well as a significant depletion of goblet cell metaplasia and mucus secretion markers after HDM exposure. The Igf1r-deficient mice displayed a distinctly thinner epithelial layer than control mice, but this was not altered by HDM. Conclusions: Herein, we demonstrate by the first time that the Igf1r plays an important role in murine asthma, mediating both AHR and mucus secretion after HDM exposure. Thus, our study identifies IGF1R as a potential therapeutic target, not only for asthma but also for hypersecretory airway diseases.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。