Oncogenic mutations in intestinal adenomas regulate Bim-mediated apoptosis induced by TGF-β

肠腺瘤中的致癌突变调节 TGF-β 诱导的 Bim 介导的细胞凋亡

阅读:7
作者:Zoltán Wiener, Arja M Band, Pauliina Kallio, Jenny Högström, Ville Hyvönen, Seppo Kaijalainen, Olli Ritvos, Caj Haglund, Olli Kruuna, Sylvie Robine, Daniel Louvard, Yinon Ben-Neriah, Kari Alitalo

Abstract

In the majority of microsatellite-stable colorectal cancers (CRCs), an initiating mutation occurs in the adenomatous polyposis coli (APC) or β-catenin gene, activating the β-catenin/TCF pathway. The progression of resulting adenomas is associated with oncogenic activation of KRas and inactivation of the p53 and TGF-β/Smad functions. Most established CRC cell lines contain mutations in the TGF-β/Smad pathway, but little is known about the function of TGF-β in the early phases of intestinal tumorigenesis. We used mouse and human ex vivo 3D intestinal organoid cultures and in vivo mouse models to study the effect of TGF-β on the Lgr5(+) intestinal stem cells and their progeny in intestinal adenomas. We found that the TGF-β-induced apoptosis in Apc-mutant organoids, including the Lgr5(+) stem cells, was mediated by up-regulation of the BH3-only proapoptotic protein Bcl-2-like protein 11 (Bim). BH3-mimetic compounds recapitulated the effect of Bim not only in the adenomas but also in human CRC organoids that had lost responsiveness to TGF-β-induced apoptosis. However, wild-type intestinal crypts were markedly less sensitive to TGF-β than Apc-mutant adenomas, whereas the KRas oncogene increased resistance to TGF-β via the activation of the Erk1/2 kinase pathway, leading to Bim down-regulation. Our studies identify Bim as a critical mediator of TGF-β-induced apoptosis in intestinal adenomas and show that the common progression mutations modify Bim levels and sensitivity to TGF-β during intestinal adenoma development.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。