A novel self-assembled nanoparticle vaccine with HIV-1 Tat₄₉₋₅₇/HPV16 E7₄₉₋₅₇ fusion peptide and GM-CSF DNA elicits potent and prolonged CD8⁺ T cell-dependent anti-tumor immunity in mice

一种含有 HIV-1 Tat₄₉₋₅₇/HPV16 E7₄₉₋₅₇ 融合肽和 GM-CSF DNA 的新型自组装纳米颗粒疫苗可在小鼠中引发强效且持久的 CD8⁺ T 细胞依赖性抗肿瘤免疫

阅读:4
作者:Jun Tang, Rui Yin, Yi Tian, Zeming Huang, Jinglei Shi, Xiaolan Fu, Li Wang, Yuzhang Wu, Fei Hao, Bing Ni

Abstract

Peptide-based vaccines derived from the E7 protein of human papillomavirus (HPV) type 16 were developed to induce effective T cell responses against established cervical cancer, but have met with limited clinical success. It is necessary to develop novel peptide-based strategies to substantially improve the immune response against HPV16-related cancer. In this study, we aimed to design a novel peptide-based self-assembled nanoparticle HPV16 vaccine by combining the cell-penetrating peptide HIV-1 Tat(49-57) that was fused with the HPV16 E7(49-57) cytotoxic T lymphocyte (CTL) epitope and the granulocyte-macrophage colony stimulating factor (GM-CSF) gene, and to investigate how it improves the immune response and the therapeutic outcome ex vivo and in vivo. Nanoparticles were prepared and identified by transmission electron microscopy (TEM), gel retardation and DNase I protection assays. This type of vaccine formulation formed the 20-80 nm nanoparticles, and greatly improved epitope-specific immunity both ex vivo and in vivo. Importantly, this vaccine type was associated with decreased tumor growth and enhanced long-term survival in the prophylactic and therapeutic mouse models. The underlying mechanisms were determined to involve priming of enhanced frequency of CD8(+) memory T subtype cells. These results suggest that the nanoparticle Tat-E7/pGM-CSF represents a promising novel approach to enhance the potency of peptide-based cervical cancer vaccines, and this vaccine design strategy may act as a useful reference for research of virus-associated diseases and specific tumor immunotherapies.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。