Inhibition of GluN2B pathway is involved in the neuroprotective effect of silibinin on streptozotocin-induced Alzheimer's disease models

GluN2B 通路抑制与水飞蓟宾对链脲佐菌素诱发的阿尔茨海默病模型的神经保护作用有关

阅读:5
作者:Panwen Liu, Chenkang Wang, Wenhui Chen, Yu Kang, Weiwei Liu, Zhiyue Qiu, Toshihiko Hayashi, Kazunori Mizuno, Shunji Hattori, Hitomi Fujisaki, Takashi Ikejima

Background

Over-activation of N-methyl-D-aspartate receptors (NMDARs) is involved in sporadic Alzheimer's disease. Silibinin, a natural flavonoid gained from the seeds of Silybum marianum, exerts neuroprotective effects on sporadic AD models, but its impacts on NMDARs remain unknown.

Conclusion

Inhibiting over-activation of GluN2B-containing NMDARs is involved in the neuroprotective effect of silibinin on STZ-induced sporadic AD models.

Methods

MTT assay, western blotting, confocal microscopy, flow cytometry, RT-PCR, and siRNA transfection etc. were used for cellular and molecular studies. The direct interactions between silibinin and NMDAR subunits were evaluated by computational molecular docking, drug affinity responsive target stability (DARTS) assay and cellular thermal shift assay (CETSA). Y maze test, novel objects recognition test and Morris water maze test were conducted to examine the learning and memory ability of rats.

Purpose

To study silibinin's regulatory effects on NMDARs pathway in sporadic AD models.

Results

An in vitro AD model was established by treating HT22 murine hippocampal neurons with streptozotocin (STZ), as evidenced by the amyloid β (Aβ) deposition and hyperphosphorylation of tau proteins. Silibinin shows protection of neurons against STZ-induced cell damage. It is noteworthy that STZ-induced cellular calcium influx is inhibited by silibinin-treatment, indicating the possible modulation of calcium channels. Studies on NMDARs, the most widely distributed calcium channel, by using molecular docking, DARTS and CESTA, reveal that the GluN2B subunit, but not GluN2A, is the potential target of silibinin. Further studies using the pharmacological agonist (NMDA) and the GluN2B-specific inhibitor (Ifenprodil) or siRNA, indicate that the protection by silibinin treatment from STZ-induced cytotoxicity is medicated through interference with GluN2B-containing NMDARs, followed by the upregulation of CaMKIIα/ BDNF/ TrkB signaling pathway and improved levels of synaptic proteins (SYP and PSD-95). The results in vivo using rats intracerebroventricularly injected with STZ (ICV-STZ), a well-established sporadic AD model, confirm that silibinin improves learning and memory ability in association with modulation of the GluN2B/CaMKIIα/ BDNF/TrkB signaling pathway.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。