Human gestational diabetes mellitus-derived exosomes impair glucose homeostasis in pregnant mice and stimulate functional maturation of offspring-islets

人类妊娠期糖尿病衍生的外泌体损害妊娠小鼠的葡萄糖稳态并刺激子代胰岛的功能成熟

阅读:8
作者:Linhai Zou, Chunxue Xu, Li Wang, Xiangju Cao, Xinyu Jia, Zhihong Yang, Guohui Jiang, Lixia Ji

Aims

Pancreatic islets undergo critical development and functional maturation during the perinatal period when they are highly sensitive to microenvironment. We aim to determine the effects and mechanisms of gestational diabetes mellitus (GDM) hypermetabolic stress on glucose homeostasis in pregnant mice and functional maturation of the islets of their offspring. Main

Methods

Exosomes were extracted from the umbilical vein blood of individuals with or without GDM for administration to pregnant mice. The blood glucose, serum insulin, glycosylated hemoglobin, and lipopolysaccharide levels were measured in pregnant mice. The expression and localization of insulin, glucagon, PC1/3, PDX1, and p-S6 in the islets of neonatal rats were continuously monitored using immunofluorescence to evaluate their functional status. Primary islet cells were cultured and treated with GDM exosomes and exendin to determine the expression of GLP-1R, AKT, p-AKT, and p-S6 via western blotting. Key findings: GDM exosomes induced remarkable oral glucose intolerance, hyperinsulinemia, and metabolic inflammation in pregnant mice. The islets of GDM offspring exhibited high insulin, glucagon, PC1/3, PDX1, and p-S6 expression at and after birth, and activation of the local GLP-1/GLP-1R axis. The functional maturation of normal-offspring islets did not commence until after birth, while it was activated prior to birth in GDM offspring, seriously disrupting the whole process. GDM exosomes activated the GLP-1/GLP-1R axis between α and β cells, and stimulated functional maturation of β cells via the Akt-mTORC1-pS6 pathway. Significance: These findings provide preliminary insights into the mechanisms underlying the high incidence of diabetes in the offspring of mothers with GDM.

Significance

These findings provide preliminary insights into the mechanisms underlying the high incidence of diabetes in the offspring of mothers with GDM.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。