LARG GEF and ARHGAP18 orchestrate RhoA activity to control mesenchymal stem cell lineage

LARG GEF 和 ARHGAP18 协调 RhoA 活性来控制间充质干细胞谱系

阅读:10
作者:William R Thompson, Sherwin S Yen, Gunes Uzer, Zhihui Xie, Buer Sen, Maya Styner, Keith Burridge, Janet Rubin

Abstract

The quantity and quality of bone depends on osteoblastic differentiation of mesenchymal stem cells (MSCs), where adipogenic commitment depletes the available pool for osteogenesis. Cell architecture influences lineage decisions, where interfering with cytoskeletal structure promotes adipogenesis. Mechanical strain suppresses MSC adipogenesis partially through RhoA driven enhancement of cytoskeletal structure. To understand the basis of force-driven RhoA activation, we considered critical GEFs (activators) and GAPs (inactivators) on bone marrow MSC lineage fate. Knockdown of LARG accelerated adipogenesis and repressed basal RhoA activity. Importantly, mechanical activation of RhoA was almost entirely inhibited following LARG depletion, and the ability of strain to inhibit adipogenesis was impaired. Knockdown of ARHGAP18 increased basal RhoA activity and actin stress fiber formation, but did not enhance mechanical strain activation of RhoA. ARHGAP18 null MSCs exhibited suppressed adipogenesis assessed by Oil-Red-O staining and Western blot of adipogenic markers. Furthermore, ARHGAP18 knockdown enhanced osteogenic commitment, confirmed by alkaline phosphatase staining and qPCR of Sp7, Alpl, and Bglap genes. This suggests that ARHGAP18 conveys tonic inhibition of MSC cytoskeletal assembly, returning RhoA to an "off state" and affecting cell lineage in the static state. In contrast, LARG is recruited during dynamic mechanical strain, and is necessary for mechanical suppression of adipogenesis. In summary, mechanical activation of RhoA in mesenchymal progenitors is dependent on LARG, while ARHGAP18 limits RhoA delineated cytoskeletal structure in static cultures. Thus, on and off GTP exchangers work through RhoA to influence MSC fate and responses to static and dynamic physical factors in the microenvironment.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。