Adsorption behavior of polyamide microplastics as a vector of the cyanotoxin microcystin-LR in environmental freshwaters

聚酰胺微塑料作为蓝藻毒素微囊藻毒素-LR载体在环境淡水中的吸附行为

阅读:5
作者:Namyeon Kim, So Yoon Kim, Seung-Woo Lee, Eun-Hee Lee

Abstract

Microplastics are ubiquitous environmental contaminants, and concern about microplastics functioning as vectors for coexisting environmental contaminants has been increasing. In this study, we evaluated the potential of microplastics as a vector for microcystins (MCs) in an aquatic environment. Six microplastics-polyvinylidene chloride, polystyrene, polyamide-6 (PA-6), polyvinyl chloride, poly(ethylene terephthalate), and polyethylene-were used in the experiments, and the PA-6 microplastics showed strong affinity toward the cyanotoxin microcystin-leucine arginine (MC-LR) with an adsorption efficiency of 89.5 ± 0.1 %. The adsorption of MC-LR onto PA-6 microplastics was well described by the pseudo-first-order kinetics and Langmuir isotherm models, and the adsorption was considered to be driven mainly by polar-polar interactions. The maximum adsorption capacity (qm) of MC-LR onto PA-6 microplastics was estimated to be 85.64-129.05 μg per g of PA-6 microplastics. Coexisting ions of NaCl, MgSO4, KH2PO4, CaCO3, and Na2HPO4 marginally affected the adsorption of MC-LR onto the PA-6 microplastics. However, water-quality parameters of conductivity and total-nitrogen content in environmental freshwaters influenced the adsorption of MC-LR onto PA-6 microplastics. The adsorption capability of PA-6 microplastics was evaluated using extracellular MCs (i.e., MC-LR, MC-YR, MC-RR, and total MCs) released from Microcystis aeruginosa cells during their growth.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。