Diethyl Succinate Modulates Microglial Polarization and Activation by Reducing Mitochondrial Fission and Cellular ROS

琥珀酸二乙酯通过减少线粒体裂变和细胞 ROS 来调节小胶质细胞的极化和活化

阅读:6
作者:Lixiang Wang, Yanli Zhang, Magdalena Kiprowska, Yuqi Guo, Ken Yamamoto, Xin Li

Abstract

Succinate is a metabolite in the tricarboxylic acid cycle (TCA) which plays a central role in mitochondrial activity. Excess succinate is known to be transported out of the cytosol, where it activates a succinate receptor (SUCNR1) to enhance inflammation through macrophages in various contexts. In addition, the intracellular role of succinate beyond an intermediate metabolite and prior to its extracellular release is also important to the polarization of macrophages. However, the role of succinate in microglial cells has not been characterized. Lipopolysaccharide (LPS) stimulates the elevation of intracellular succinate levels. To reveal the function of intracellular succinate associated with LPS-stimulated inflammatory response in microglial cells, we assessed the levels of ROS, cytokine production and mitochondrial fission in the primary microglia pretreated with cell-permeable diethyl succinate mimicking increased intracellular succinate. Our results suggest that elevated intracellular succinate exerts a protective role in the primary microglia by preventing their conversion into the pro-inflammatory M1 phenotype induced by LPS. This protective effect is SUCNR1-independent and mediated by reduced mitochondrial fission and cellular ROS production.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。