ACACA reduces lipid accumulation through dual regulation of lipid metabolism and mitochondrial function via AMPK- PPARα- CPT1A axis

ACACA 通过 AMPK- PPARα- CPT1A 轴双重调节脂质代谢和线粒体功能,减少脂质积累

阅读:6
作者:Jian Dong #, Muzi Li #, Runsheng Peng, Yuchuan Zhang, Zilin Qiao, Na Sun

Background

Non-alcoholic fatty liver disease (NAFLD) is a multifaceted metabolic disorder, whose global prevalence is rapidly increasing. Acetyl CoA carboxylases 1 (ACACA) is the key enzyme that controls the rate of fatty acid synthesis. Hence, it is crucial to investigate the function of ACACA in regulating lipid metabolism during the progress of NAFLD.

Conclusion

Targeting ACACA can reduce lipid accumulation by mediating the AMPK- PPARα- CPT1A pathway, which regulates lipid metabolism and alleviates mitochondrial dysfunction.

Methods

Firstly, a fatty liver mouse model was established by high-fat diet at 2nd, 12th, and 20th week, respectively. Then, transcriptome analysis was performed on liver samples to investigate the underlying mechanisms and identify the target gene of the occurrence and development of NAFLD. Afterwards, lipid accumulation cell model was induced by palmitic acid and oleic acid (PA ∶ OA molar ratio = 1∶2). Next, we silenced the target gene ACACA using small interfering RNAs (siRNAs) or the CMS-121 inhibitor. Subsequently, experiments were performed comprehensively the effects of inhibiting ACACA on mitochondrial function and lipid metabolism, as well as on AMPK- PPARα- CPT1A pathway.

Results

This data indicated that the pathways significantly affected by high-fat diet include lipid metabolism and mitochondrial function. Then, we focus on the target gene ACACA. In addition, the in vitro results suggested that inhibiting of ACACA in vitro reduces intracellular lipid accumulation, specifically the content of TG and TC. Furthermore, ACACA ameliorated mitochondrial dysfunction and alleviate oxidative stress, including MMP complete, ATP and ROS production, as well as the expression of mitochondria respiratory chain complex (MRC) and AMPK proteins. Meanwhile, ACACA inhibition enhances lipid metabolism through activation of PPARα/CPT1A, leading to a decrease in intracellular lipid accumulation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。