Astragaloside IV and echinacoside benefit neuronal properties via direct effects and through upregulation of SOD1 astrocyte function in vitro

黄芪甲苷 IV 和松果菊苷通过直接作用和体外上调 SOD1 星形胶质细胞功能,有益于神经元特性

阅读:9
作者:Yang Tian, Shijie Jin, Vanessa Promes, Xuemei Liu, Yunling Zhang

Abstract

Amyotrophic lateral sclerosis (ALS), also known as a major type of motor neuron disease, is a disease characterized by the degeneration of both upper and lower motor neurons. Astragaloside IV (AST) is one of the most effective compounds isolated from Astragalus membranaceus. Echinacoside (ECH) is also an active constituent in Cistanche tubulosa. These two herbs had been used in treating disease described like ALS in ancient China under the guidance of traditional Chinese medicine theory and now they are still being used extensively for ALS in current Chinese medicine practice, but whether AST or ECH has effect on ALS disease condition is still unclear. Survivals of primary cultured neuron and astrocyte were determined by the MTS assay. Proteins including GLT1 and GFAP, from SOD1 G93A Tg (transgenic) astrocyte lysate were determined by Western blot. Synaptic markers, PSD95 and VGLUT1, were stained by immunofluorescence and observed by a confocal microscope. Proper dilution of AST and ECH was confirmed to be not harmful to both astrocytes and neurons. AST and ECH enhanced neuronal synaptic markers density or intensity/area in different aspects. Both AST and ECH could significantly rescue SOD1 astrocyte conditional medium-treated neuronal survival and synapse loss. Ten micromolars ECH could significantly rescue the suppressed GLT1 level expressed by SOD1 Tg astrocyte. This present research proved that AST and ECH could benefit neuronal properties and rescue certain dysfunction, such as GLT1 low expression, loss of neuron-supporting function, of astrocytes under SOD1 condition.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。