Shikonin differentially regulates glucose metabolism via PKM2 and HIF1α to overcome apoptosis in a refractory HCC cell line

紫草素通过 PKM2 和 HIF1α 差异调节葡萄糖代谢,以克服难治性肝癌细胞系中的细胞凋亡

阅读:7
作者:Wei Yang, Jianhua Liu, Lin Hou, Qingmin Chen, Yahui Liu

Aims

In tumor cells, shikonin treatment has been reported to inhibit glycolysis by suppressing the activity of pyruvate kinase M2 (PKM2) and to induce apoptosis by increasing reactive oxygen species (ROS) production. However, hepatocellular carcinoma (HCC) shows variable sensitivity to shikonin treatment, and the mechanism for these differences remains unclear. We evaluated the effects of shikonin on metabolic and oxidative pathways in sensitive and refractory HCC cell lines to identify mechanisms of differential sensitivity. Main

Methods

Cell viability and apoptosis were evaluated by MTT assay, PI/Annexin V and JC-1 staining. Mitochondrial function was further evaluated by measurements of ROS and mitochondrial mass. Oxygen consumption rates, NAD+/NADH, ATP and lactate were measured as indicators of energy metabolism and glycolysis. Protein expression associated with glycolysis and apoptosis was evaluated by western blotting, RT-qPCR and immunofluorescence staining. Key findings: The sensitivity to shikonin treatment was significantly higher for HepG2 cells than for HCCLM3 cells, with less dramatic effects in HCCLM3 cells on apoptosis, ROS, and oxidative phosphorylation. Shikonin up-regulated mitochondrial biogenesis to increase mitochondrial oxidative phosphorylation in HepG2 cells, but displayed the opposite trend in HCCLM3 cells. Mechanistically, shikonin promoted nuclear expression of PKM2 and HIF1α in HCCLM3 cells, with upregulation of glycolysis-related gene transcription and glycolysis. Significance: These

Significance

These results suggest that PKM2 rewires glucose metabolism, which explains the differential sensitivity to shikonin-induced apoptosis in HCC cells. Our findings elucidate mechanisms for differential responses to shikonin, provide potential biomarkers, and indicate a theoretical basis for targeting glycolytic enzymes in refractory HCC.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。