Inhibition of Caveolae Contributes to Propofol Preconditioning-Suppressed Microvesicles Release and Cell Injury by Hypoxia-Reoxygenation

抑制 Caveolae 有助于丙泊酚预处理抑制微泡释放和缺氧复氧引起的细胞损伤

阅读:5
作者:Fan Deng, Shuang Wang, Shuyun Cai, Zhe Hu, Riping Xu, Jingjing Wang, Du Feng, Liangqing Zhang

Abstract

Endothelial microvesicles (EMVs), released after endothelial cell (EC) apoptosis or activation, may carry many adverse signals and propagate injury by intercellular transmission. Caveolae are 50-100 nm cell surface plasma membrane invaginations involved in many pathophysiological processes. Recent evidence has indicated EMVs and caveolae may have functional effects in cells undergoing H/R injury. Propofol, a widely used anaesthetic, confers antioxidative stress capability in the same process. But the connection between EMVs, H/R, and caveolae remains largely unclear. Here, we found that H/R significantly increased the release of EMVs, the expression of CAV-1 (the structural protein responsible for maintaining the shape of caveolae), oxidative stress, and the mitochondrial damage, and all these changes were inhibited by propofol preconditioning. Interestingly, the caveolae inhibitor Mβ-CD strengthened the protective effect of propofol preconditioning. We further found that the release of EMVs is more significantly reduced under propofol preconditioning in the presence of the caveolae inhibitor Mβ-CD. EMVs released from H/R-treated cells caused a substantially increased mitochondrial and cellular damage to normal HUVECs after 4 hours of coculture. Thus, we conclude that inhibition of caveolae contributes to propofol preconditioning-suppressed microvesicles release and cell injury by H/R.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。