Catalpol alleviates myocardial ischemia reperfusion injury by activating the Nrf2/HO-1 signaling pathway

梓醇通过激活Nrf2/HO-1信号通路减轻心肌缺血再灌注损伤

阅读:6
作者:Hanwei Ge, Wei Lin, Zhiling Lou, Ruiheng Chen, Haochun Shi, Qifeng Zhao, Zhiyong Lin

Conclusion

In summary, the findings suggest that Catalpol exerted significant cardioprotective effects following myocardial ischemia, possibly through the activation of the Nrf2/HO-1 signaling pathway.

Methods

This study using both in vitro and in vivo models investigated the possible role and underlying mechanisms used by Catalpol for modulating of MI/RI. The potential effects of Catalpol on the viability of cardiomyocytes were measured by cell counting kit-8 (CCK-8) assays. The phenotypes of myocardial injury, oxidative stress and inflammation markers were measured by western blot, immunofluorescence, enzyme-linked immunosorbent assay (ELISA) etc. Nrf2/HO-1 signaling pathway was detected by immunofluorescence and western blot analysis.

Purpose

Myocardial ischemia/reperfusion injury (MI/RI) is a major problem in the clinical treatment of ischemic cardiomyopathy, and its specific underlying mechanisms are complicated and still unclear. A number of studies have indicated that the nuclear factor erythroid 2-related factor 2 (Nrf2)/heme oxidase-1(HO-1) signaling pathway might serve as an important target for the management of MI/RI. Catalpol is a kind of iridoid glucoside that has been found to exhibit diverse anti-inflammatory and antioxidant properties. This study was aimed at investigating the role of Catalpol in targeting MI/RI and its related mechanisms in an oxygen-glucose deprivation/reoxygenation (OGD/R) model in vitro and a preclinical ischemia/reperfusion (I/R) model.

Results

We found that Catalpol significantly suppressed the process of MI/RI and protected OGD/R-treated cardiomyocytes by inhibiting the various markers of inflammation and suppressing oxidative stress. Additionally, mechanistically it was also demonstrated that Catalpol could effectively activate Nrf2/HO-1 signaling pathway to suppress the damage caused by inflammation and oxidative stress in MI/RI.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。