An induced pluripotent stem cell-derived NMJ platform for study of the NGLY1-Congenital Disorder of Deglycosylation

诱导性多能干细胞衍生的 NMJ 平台,用于研究 NGLY1-先天性去糖基化障碍

阅读:7
作者:Trevor Sasserath, Ashley L Robertson, Roxana Mendez, Tristan T Hays, Ethan Smith, Helena Cooper, Nesar Akanda, John W Rumsey, Xiufang Guo, Atena Farkhondeh, Manisha Pradhan, Karsten Baumgaertel, Matthew Might, Steven Rodems, Wei Zheng, James J Hickman

Abstract

There are many neurological rare diseases where animal models have proven inadequate or do not currently exist. NGLY1 Deficiency, a congenital disorder of deglycosylation, is a rare disease that predominantly affects motor control, especially control of neuromuscular action. In this study, NGLY1-deficient, patient-derived induced pluripotent stem cells (iPSCs) were differentiated into motoneurons (MNs) to identify disease phenotypes analogous to clinical disease pathology with significant deficits apparent in the NGLY1-deficient lines compared to the control. A neuromuscular junction (NMJ) model was developed using patient and wild type (WT) MNs to study functional differences between healthy and diseased NMJs. Reduced axon length, increased and shortened axon branches, MN action potential (AP) bursting and decreased AP firing rate and amplitude were observed in the NGLY1-deficient MNs in monoculture. When transitioned to the NMJ-coculture system, deficits in NMJ number, stability, failure rate, and synchronicity with indirect skeletal muscle (SkM) stimulation were observed. This project establishes a phenotypic NGLY1 model for investigation of possible therapeutics and investigations into mechanistic deficits in the system.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。