Fbw7 targets GATA3 through cyclin-dependent kinase 2-dependent proteolysis and contributes to regulation of T-cell development

Fbw7 通过依赖细胞周期蛋白激酶 2 的蛋白水解靶向 GATA3,并有助于调节 T 细胞的发育

阅读:4
作者:Kyoko Kitagawa, Kiyoshi Shibata, Akinobu Matsumoto, Masaki Matsumoto, Tatsuya Ohhata, Keiichi I Nakayama, Hiroyuki Niida, Masatoshi Kitagawa

Abstract

Proper development of T cells depends on lineage-specific regulators controlled transcriptionally and posttranslationally to ensure precise levels at appropriate times. Conditional inactivation of F-box protein Fbw7 in mouse T-cell development resulted in reduced thymic CD4 single-positive (SP) and splenic CD4(+) and CD8(+) cell proportions. Fbw7 deficiency skewed CD8 SP lineage differentiation, which exhibited a higher incidence of apoptosis. Similar perturbations during development of CD8-positive cells were reported with transgenic mice, which enforced GATA3 (T-cell differentiation regulator) expression throughout T-cell development. We observed augmented GATA3 in CD4/CD8 double negative (DN) stage 4, CD4 SP, and CD8 SP lineages in Fbw7-deficient thymocytes. Using overexpressed proteins in cultured cells, we demonstrated that Fbw7 bound to, ubiquitylated, and destabilized GATA3. Two Cdc4 phosphodegron (CPD) candidate sequences, consensus Fbw7 recognition domains, were identified in GATA3, and phosphorylation of Thr-156 in CPD was required for Fbw7-mediated ubiquitylation and degradation. Phosphorylation of GATA3 Thr-156 was detected in mouse thymocytes, and cyclin-dependent kinase 2 (CDK2) was identified as a respondent for phosphorylation at Thr-156. These observations suggest that Fbw7-mediated GATA3 regulation with CDK2-mediated phosphorylation of CPD contributes to the precise differentiation of T-cell lineages.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。