Effect of chitin-architected spatiotemporal three-dimensional culture microenvironments on human umbilical cord-derived mesenchymal stem cells

几丁质构建时空三维培养微环境对人脐带间充质干细胞的影响

阅读:4
作者:Shuoji Zhu, Junfeng Xuan, Yunchao Shentu, Katsuhiko Kida, Masaki Kobayashi, Wei Wang, Minoru Ono, Dehua Chang

Abstract

Mesenchymal stem cell (MSC) transplantation has been explored for the clinical treatment of various diseases. However, the current two-dimensional (2D) culture method lacks a natural spatial microenvironment in vitro. This limitation restricts the stable establishment and adaptive maintenance of MSC stemness. Using natural polymers with biocompatibility for constructing stereoscopic MSC microenvironments may have significant application potential. This study used chitin-based nanoscaffolds to establish a novel MSC three-dimensional (3D) culture. We compared 2D and 3D cultured human umbilical cord-derived MSCs (UCMSCs), including differentiation assays, cell markers, proliferation, and angiogenesis. When UCMSCs are in 3D culture, they can differentiate into bone, cartilage, and fat. In 3D culture condition, cell proliferation is enhanced, accompanied by an elevation in the secretion of paracrine factors, including vascular endothelial growth factor (VEGF), hepatocyte growth factor (HGF), Interleukin-6 (IL-6), and Interleukin-8 (IL-8) by UCMSCs. Additionally, a 3D culture environment promotes angiogenesis and duct formation with HUVECs (Human Umbilical Vein Endothelial Cells), showing greater luminal area, total length, and branching points of tubule formation than a 2D culture. MSCs cultured in a 3D environment exhibit enhanced undifferentiated, as well as higher cell activity, making them a promising candidate for regenerative medicine and therapeutic applications.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。