Secretion of the disulfide bond generating catalyst QSOX1 from pancreatic tumor cells into the extracellular matrix: association with extracellular vesicles and matrix proteins

二硫键生成催化剂 QSOX1 从胰腺肿瘤细胞分泌到细胞外基质:与细胞外囊泡和基质蛋白的结合

阅读:7
作者:Catherine S Millar-Haskell, John L Sperduto, John H Slater, Colin Thorpe, Jason P Gleghorn

Abstract

Quiescin sulfhydryl oxidase 1 (QSOX1) is a disulfide bond generating catalyst that is overexpressed in solid tumors. Expression of QSOX1 is linked to cancer cell invasion, tumor grade, and extracellular matrix (ECM) protein deposition. While the secreted version of QSOX1 is known to be present in various fluids and secretory tissues, its presence in the ECM of cancer is less understood. To characterize secreted QSOX1, we separated conditioned media based on size and density. We discovered that the majority of secreted QSOX1 resides in the EV-depleted fraction and in the soluble protein fraction. Very little QSOX1 could be detected in the EVP fraction. We used immunofluorescence to image subpopulations of EVs and found QSOX1 in Golgi-derived vesicles and medium/large vesicles, but in general, most extracellular QSOX1 was not attributed to these vesicles. Next, we quantified QSOX1 co-localization with the EV marker Alix. For the medium/large EVs, ~98% contained QSOX1 when fibronectin was used as a coating. However, on collagen coatings, only ~60% of these vesicles contained QSOX1, suggesting differences in EV cargo based on ECM coated surfaces. About 10% of small EVs co-localized with QSOX1 on every ECM protein surface except for collagen (0.64%). We next investigated adhesion of QSOX1 to ECM proteins in vitro and in situ and found that QSOX1 preferentially adheres to fibronectin, laminins, and Matrigel compared to gelatin and collagen. This mechanism was found to be, in part, mediated by the formation of mixed disulfides between QSOX1 and cysteine-rich ECM proteins. In summary, we found that QSOX1 (1) is in subpopulations of medium/large EVs, (2) seems to interact with small Alix+ EVs, and (3) adheres to cysteine-rich ECM proteins, potentially through the formation of intermediate disulfides. These observations offer significant insight into how enzymes, such as QSOX1, can facilitate matrix remodeling events in solid tumor progression.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。