Mitochondrial Responses to Sublethal Doxorubicin in H9c2 Cardiomyocytes: The Role of Phosphorylated CaMKII

H9c2 心肌细胞对亚致死阿霉素的线粒体反应:磷酸化 CaMKII 的作用

阅读:6
作者:Agung Kurniawan Priyono, Junichiro Miake, Tatsuya Sawano, Yoshinori Ichihara, Keiko Nagata, Akihiro Okamura, Takuya Tomomori, Aiko Takami, Tomomi Notsu, Kazuhiro Yamamoto, Takeshi Imamura

Background

Doxorubicin (Dox) is effective against different types of cancers, but it poses cardiotoxic side effects, frequently resulting in irreversible heart failure. However, the complexities surrounding this cardiotoxicity, especially at sublethal dosages, remain to be fully elucidated. We investigated early cellular disruptions in response to sublethal Dox, with a specific emphasis on the role of phosphorylated calcium/calmodulin-dependent protein kinase II (CaMKII) in initiating mitochondrial dysfunction.

Conclusion

Sublethal administration of Dox is closely linked to CaMKII activation through phosphorylation, emphasizing its pivotal role in early mitochondrial disruption. These findings present a promising direction for developing therapeutic strategies that may alleviate the cardiotoxic effects of Dox, potentially increasing its clinical efficacy.

Methods

This study utilized the H9c2 cardiomyocyte model to identify a sublethal concentration of Dox and investigate its impact on mitochondrial health using markers such as mitochondrial membrane potential (MMP), mitophagy initiation, and mitochondrial calcium dynamics. We examined the roles of and interactions between CaMKII, dynamin-related protein 1 (Drp1), and the mitochondrial calcium uniporter (MCU) in Dox-induced mitochondrial disruption using specific inhibitors, such as KN-93, Mdivi-1, and Ru360, respectively.

Results

Exposure to a sublethal dose of Dox reduced the MMP red-to-green fluorescence ratio in H9c2 cells by 40.6% compared with vehicle, and increased the proportion of cells undergoing mitophagy from negligible levels compared with vehicle to 62.2%. Mitochondrial calcium levels also increased by 8.7-fold compared with the vehicle group. Notably, the activation of CaMKII, particularly its phosphorylated form, was pivotal in driving these mitochondrial changes, as inhibition using KN-93 restored MMP and decreased mitophagy. However, inhibition of Drp1 and MCU functions had a limited impact on the observed mitochondrial disruptions.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。