Scoparone alleviates inflammation, apoptosis and fibrosis of non-alcoholic steatohepatitis by suppressing the TLR4/NF-κB signaling pathway in mice

滨藜芦酮通过抑制小鼠TLR4/NF-κB信号通路减轻非酒精性脂肪性肝炎的炎症、凋亡和纤维化

阅读:4
作者:Beibei Liu, Xiaoling Deng, Qianqian Jiang, Guixin Li, Junli Zhang, Ning Zhang, Shengliang Xin, Keshu Xu

Abstract

Scoparone, a naturally-occurring, bioactive compound isolated from the Chinese herb Artemisia capillaria, has been shown to ameliorate hepatotoxicity and cholestasis in liver diseases. However, the pharmacological effect of scoparone in non-alcoholic steatohepatitis (NASH) has not been elucidated. In this study, we investigated the protective effects and mechanisms of scoparone in NASH. In vivo, the NASH model was established in mice fed a methionine and choline-deficient (MCD) diet for 4weeks, with or without simultaneous scoparone treatment. In vitro, RAW264.7 cells induced by lipopolysaccharide (LPS) were pretreated with or without different concentrations of scoparone. Hepatic triglycerides and serum AST and ALT levels were examined by biochemical assays. Hepatic histology was assessed by H&E, oil red O and Masson's trichrome staining methods, which were applied to analyze the protective effects of scoparone in NASH. To further explore the underlying mechanism of scoparone, immunohistochemistry, TUNEL, qRT-PCR, and Western blotting assays were applied to liver tissue or LPS-induced RAW264.7 cells. We found that scoparone can effectively improve hepatic steatosis, apoptosis, inflammation, and fibrosis in an MCD diet-induced NASH murine model. Mechanistically, we demonstrated that scoparone treatment alleviates NASH- and lipopolysaccharide (LPS)-induced immune responses in macrophages partly by blocking TLR-4/NF-κB signaling in a dose-dependent manner. Taken together, our results present the potential protective effects and mechanism of scoparone in NASH, suggesting a potentially beneficial drug treatment for NASH.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。