Sequential activation of the AKT pathway in human osteoblasts treated with Oscarvit: a bioactive product with positive effect both on skeletal pain and mineralization in osteoblasts

Oscarvit 治疗后,人类成骨细胞中的 AKT 通路被连续激活:一种对骨骼疼痛和成骨细胞矿化均有积极作用的生物活性产品

阅读:5
作者:Tibor Görögh, Elgar S Quabius, Alexander Georgitsis, Markus Hoffmann, Sebastian Lippross

Background

Oscarvit (OSC) is an in-house preparation consisting of calcium, magnesium, phosphorus, strontium, Vitamin D, and eggshell membrane hydrolysate containing naturally occurring glycosaminoglycans and sulfated glycoproteins. OSC has been used both in an open-label human study and in vitro in osteoblasts.

Conclusion

This open label study provides preliminary evidence of the efficacy of OSC. Despite the limitations (small heterogeneous patient group) the findings can be viewed as a necessary investigation that supports further clinical trials with a double-blind controlled design. Experiments at cellular and molecular level provide

Methods

Fifteen patients divided into three groups received oral OSC 0.6 g three times daily for 20 days. The main outcome measures were regional skeletal pain over the treatment period. For the in vitro experiments eight primary human osteoblasts cultures were established from trabecular bone, six of them from the femoral head, and two from the tibia. Cells were cultured for five to 20 days in the presence of 20 μg/ml OSC. Immunocytochemistry and RT-PCR were used to detect molecular alterations involved in the mineralization process. Calcium concentration was measured by means of a colorimetric assay and cell viability was analyzed using the LDH cytotoxicity assay. To investigate whether the osteoblasts response to OSC is associated with signaling processes the ERK1/2 and AKT signal transduction pathways were analyzed.

Results

Open label human study: OSC, 0.6 g three times daily, resulted in a significant positive effect on pain alleviation of 42% after 5 days (p < 0.001), 57% after 10 days and 68% after 20 days (p < 0.0001; for both time points), with no side-effects being reported. In vitro analysis: In osteoblasts, growing in OSC-supplemented media significant overexpression of bone γ-carboxylglutamic acid-containing protein, secreted phosphoprotein-1, integrin binding sialoprotein, and dentin matrix phosphoprotein genes could be detected when compared to control osteoblasts grown in the absence of OSC. Moreover, OSC-treated osteoblasts produced over the study period vast extracellular calcium deposits without any loss of cellular integrity or signs of cellular toxicity. In addition OSC promotes osteoblast differentiation and activates the AKT signaling pathway.

Trial registration

DRKS00013233 , 06th November 2017, retrospectively registered.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。