Induction of autophagy contributes to the neuroprotection of nicotinamide phosphoribosyltransferase in cerebral ischemia

自噬诱导有助于烟酰胺磷酸核糖转移酶在脑缺血中的神经保护作用

阅读:5
作者:Pei Wang, Yun-Feng Guan, Hui Du, Qi-Wei Zhai, Ding-Feng Su, Chao-Yu Miao

Abstract

Recent reports indicate that autophagy serves as a stress response and may participate in pathophysiology of cerebral ischemia. Nicotinamide phosphoribosyltransferase (Nampt, also known as visfatin), the rate-limiting enzyme in mammalian NAD (+) biosynthesis, protects against ischemic stroke through inhibiting neuronal apoptosis and necrosis. This study was taken to determine the involvement of autophagy in neuroprotection of Nampt in cerebral ischemia. Middle cerebral artery occlusion (MCAO) in rats and oxygen-glucose deprivation (OGD) in cultured cortical neurons were performed. Nampt was overexpressed or knocked-down using lentivirus-mediated gene transfer in vivo and in vitro. Immunochemistry (LC3-II), electron microscope and immunoblotting assays (LC3-II, beclin-1, mammalian target of rapamycin [mTOR], S6K1 and tuberous sclerosis complex-2 [TSC2]) were performed to assess autophagy. We found that overexpression of Nampt increased autophagy (LC3 puncta immunochemistry staining, LC3-II/beclin-1 expression and autophagosomes number) both in vivo and in vitro at 2 hours after MCAO. At the early stage of OGD, autophagy inducer rapamycin protected against neuronal injury induced by Nampt knockdown, whereas autophagy inhibitor 3-methyladenine abolished the neuroprotective effect of Nampt partly. Overexpression or knockdown of Nampt regulated the phosphorylation of mTOR and S6K1 signaling pathway upon OGD stress through enhancing phosphorylation of TSC2 at Ser1387 but not Thr1462 site. Furthermore, in cultured SIRT1-knockout neurons, the regulation of Nampt on autophagic proteins LC3-II and beclin-1 was abolished. Our results demonstrate that Nampt promotes neuronal survival through inducing autophagy via regulating TSC2-mTOR-S6K1 signaling pathway in a SIRT1-dependent manner during cerebral ischemia.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。