Intravenous Arginine Administration Downregulates NLRP3 Inflammasome Activity and Attenuates Acute Kidney Injury in Mice with Polymicrobial Sepsis

静脉注射精氨酸可下调 NLRP3 炎症小体活性并减轻多种微生物脓毒症小鼠的急性肾损伤

阅读:4
作者:Sharon Angela Tanuseputero, Ming-Tsan Lin, Sung-Ling Yeh, Chiu-Li Yeh

Abstract

Acute kidney injury (AKI) is a major complication of sepsis. Nucleotide-binding domain-like receptor protein 3 (NLRP3) inflammasomes are multiprotein complexes that mediate septic AKI. L-arginine (Arg) is a conditionally essential amino acid in catabolic conditions and a substrate for nitric oxide (NO) production; however, its use in sepsis is controversial. This study investigated the effect of intravenous Arg supplementation on modulating NLRP3 inflammasome activity in relation to septic AKI. Mice were divided into normal control (NC), sham, sepsis saline (SS), and sepsis Arg (SA) groups. In order to investigate the role of NO, L-N6-(1-iminoethyl)-lysine hydrochloride (L-NIL), an inducible NO synthase inhibitor, was administered to the sepsis groups. Sepsis was induced using cecal ligation and puncture (CLP). The SS and SA groups received saline or Arg via tail vein 1 h after CLP. Mice were sacrificed at 6, 12, and 24 h after sepsis. The results showed that compared to the NC group, septic mice had higher plasma kidney function parameters and lower Arg levels. Also, renal NLRP3 inflammasome protein expression and tubular injury score increased. After Arg treatment, plasma Arg and NO levels increased, kidney function improved, and expressions of renal NLRP3 inflammasome-related proteins were downregulated. Changes in plasma NO and renal NLRP3 inflammasome-related protein expression were abrogated when L-NIL was given to the Arg sepsis groups. Arg plus L-NIL administration also attenuated kidney injury after CLP. The findings suggest that intravenous Arg supplementation immediately after sepsis restores plasma Arg levels and is beneficial for attenuating septic AKI, partly via NO-mediated NLRP3 inflammasome inhibition.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。