Cancer Cell-targeted and Activatable Photoimmunotherapy Spares T Cells in a 3D Coculture Model

针对癌细胞的可激活光免疫疗法在 3D 共培养模型中节省 T 细胞

阅读:8
作者:Eric M Kercher, Shubhankar Nath, Imran Rizvi, Bryan Q Spring

Abstract

Photodynamic therapy (PDT) is an established therapeutic modality that uses nonionizing near-infrared light to activate photocytotoxicity of endogenous or exogenous photosensitizers (PSs). An ongoing avenue of cancer research involves leveraging PDT to stimulate antitumor immune responses; however, these effects appear to be best elicited in low-dose regimens that do not provide significant tumor reduction using conventional, nonspecific PSs. The loss of immune enhancement at higher PDT doses may arise in part from indiscriminate damage to local immune cell populations, including tumor-infiltrating T cells. We previously introduced "tumor-targeted, activatable photoimmunotherapy" (taPIT) using molecular-targeted and cell-activatable antibody-PS conjugates to realize precision tumor photodamage with microscale fidelity. Here, we investigate the immune cell sparing effect provided by taPIT in a 3D model of the tumor immune microenvironment. We report that high-dose taPIT spares 25% of the local immune cell population, five times more than the conventional PDT regimen, in a 3D coculture model incorporating epithelial ovarian cancer cells and T cells. These findings suggest that the enhanced selectivity of taPIT may be utilized to achieve local tumor reduction with sparing of intratumor effector immune cells that would otherwise be lost if treated with conventional PDT.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。