Comprehensive evaluation of differential long non-coding RNA and gene expression in patients with cartilaginous endplate degeneration of cervical vertebra

颈椎软骨终板退变患者差异长链非编码RNA及基因表达的综合评估

阅读:5
作者:Jinghong Yuan, Jingyu Jia, Tianlong Wu, Xijuan Liu, Shen Hu, Jian Zhang, Rui Ding, Chongzhi Pang, Xigao Cheng

Abstract

Long non-coding RNAs (lncRNAs) are emerging as key regulators in gene expression; however, little is currently known regarding their role in cartilaginous endplate (CE) degeneration (CED) of cervical vertebra. The present study aimed to investigate the expression levels of lncRNAs and analyze their potential functions in CED of cervical vertebra in patients with cervical fracture and cervical spondylosis. Human competitive endogenous RNA (ceRNA) array was used to analyze lncRNA and mRNA expression levels in CE samples from patients with cervical fracture and cervical spondylosis, who received anterior cervical discectomy and fusion. Differentially expressed lncRNAs (DELs) or differentially expressed genes (DEGs) were identified and functionally analyzed, using Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses. An lncRNA-microRNA(miRNA)-mRNA ceRNA regulatory network was constructed based on the DELs and DEGs, and the ceRNA network was visualized using Cytoscape 3.7.2 software. In total, one downregulated mRNA, one upregulated miRNA and five downstream regulated lncRNAs were identified using reverse transcription-quantitative PCR in CED and healthy CE samples. A total of 369 lncRNAs and 246 mRNAs were identified as differentially expressed in CE. The GO and KEGG analyses demonstrated that the majority of GO and KEGG enrichments were associated with CED. Furthermore, a ceRNA network was established, including 168 putative miRNA response elements, 189 upregulated and 37 downregulated lncRNAs and 47 upregulated and 10dow regulated DEGs. The present study analyzed the function of DEGs in the ceRNA network and filtered out the same items as in DEG-function enrichment analysis. These results provide a new perspective for an improved understanding of ceRNA-mediated gene regulation in cervical spondylosis, and provide a novel theoretical basis for further studies on the function of lncRNA in cervical spondylosis. However, further experiments are required to validate the results of the present study.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。