Potential therapeutic target secretogranin II might cooperate with hypoxia-inducible factor 1α in sunitinib-resistant renal cell carcinoma

潜在治疗靶点分泌粒蛋白 II 可能与缺氧诱导因子 1α 在舒尼替尼耐药性肾细胞癌中协同作用

阅读:12
作者:Wataru Fukumoto, Hirofumi Yoshino, Shin-Ichi Horike, Issei Kawakami, Motoki Tamai, Junya Arima, Ichiro Kawahara, Akihiko Mitsuke, Takashi Sakaguchi, Satoru Inoguchi, Makiko Meguro-Horike, Shuichi Tatarano, Hideki Enokida

Abstract

Multitargeted receptor tyrosine kinase inhibitors, including vascular endothelial growth factor (VEGF) inhibitors, such as sunitinib, have been used as the primary targeted agents for patients with recurrent or distant metastasis of advanced renal cell carcinoma (RCC). However, endogenous or acquired sunitinib resistance has become a significant therapeutic problem. Therefore, we focused on mechanisms of sunitinib resistance in RCC. First, we undertook RNA sequencing analysis using previously established sunitinib-resistant RCC (SUR-Caki1, SUR-ACHN, and SUR-A498) cells. The results showed increased expression of secretogranin II (SCG2, chromogranin C) in SUR-RCC cells compared to parental cells. The Cancer Genome Atlas database showed that SCG2 expression was increased in RCC compared to normal renal cells. In addition, the survival rate of the SCG2 high-expression group was significantly lower than that of the RCC low-expression group. Thus, we investigated the involvement of SCG2 in sunitinib-resistant RCC. In vitro analysis showed that migratory and invasive abilities were suppressed by SCG2 knockdown SUR cells. As SCG2 was previously reported to be associated with angiogenesis, we undertook a tube formation assay. The results showed that suppression of SCG2 inhibited angiogenesis. Furthermore, coimmunoprecipitation assays revealed a direct interaction between SCG2 and hypoxia-inducible factor 1α (HIF1α). Expression levels of VEGF-A and VEGF-C downstream of HIF1α were found to be decreased in SCG2 knockdown SUR cells. In conclusion, SCG2 could be associated with sunitinib resistance through VEGF regulation in RCC cells. These findings could lead to a better understanding of the VHL/HIF/VEGF pathway and the development of new therapeutic strategies for sunitinib-resistant RCC.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。