Stu2 acts as a microtubule destabilizer in metaphase budding yeast spindles

Stu2 在中期芽殖酵母纺锤体中充当微管不稳定剂

阅读:5
作者:Lauren Humphrey, Isabella Felzer-Kim, Ajit P Joglekar

Abstract

The microtubule-associated protein Stu2 (XMAP215) has the remarkable ability to act either as a polymerase or as a destabilizer of the microtubule plus end. In budding yeast, it is required for the dynamicity of spindle microtubules and also for kinetochore force generation. To understand how Stu2 contributes to these distinct activities, we analyzed the contributions of its functional domains to its localization and function. We find that Stu2 colocalizes with kinetochores using its TOG domains, which bind GTP-tubulin, a coiled-coil homodimerization domain, and a domain that interacts with plus-end interacting proteins. Stu2 localization is also promoted by phosphorylation at a putative CDK1 phosphorylation site located within its microtubule-binding basic patch. Surprisingly, however, we find that kinetochore force generation is uncorrelated with the amount of kinetochore-colocalized Stu2. These and other data imply that Stu2 colocalizes with kinetochores by recognizing growing microtubule plus ends within yeast kinetochores. We propose that Stu2 destabilizes these plus ends to indirectly contribute to the "catch-bond" activity of the kinetochores.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。