Linc00511 Knockdown Inhibited TGF-β1-Induced Epithelial-Mesenchymal Transition of Bronchial Epithelial Cells by Targeting miR-16-5p/Smad3

Linc00511 敲低通过靶向 miR-16-5p/Smad3 抑制 TGF-β1 诱导的支气管上皮细胞上皮-间质转化

阅读:8
作者:Weiwei She, Tianshou Sun, Chengfeng Long, Meiyu Chen, Xu Chen, Qinxue Liao, Mingdong Wang

Background

Airway remodeling in patients with asthma was correlated with induced epithelial-mesenchymal transition (EMT) of bronchial epithelial cells.

Conclusion

Linc00511 may be a valuable biomarker for asthma therapy.

Methods

The human bronchial epithelial cell 16HBE was treated with 10 ng/mL TGF-β1 for 12 h, 24 h, or 48 h to induce EMT. Cell proliferation and migration rate were detected using CCK8 and wound healing assays, respectively. The expression of key markers of EMT (E-cadherin, N-cadherin, Small mothers against decapentaplegic family member 3 [Smad3], and slug) was tested by Western blot.

Objective

This study examined the mechanism of Linc00511 on induced EMT of bronchial epithelial cells after transforming growth factor-β1 (TGF-β1) induction.

Results

We found that Linc00511 was time dependently increased in TGF-β-treated 16HBE cells. Silencing Linc00511 reduced 16HBE cell proliferation, migration, and EMT progress. In addition, the dual-luciferase reporter assay showed Linc00511 was a molecular sponge for miR-16-5p. MiR-16-5p decreased the expression of Smad3 by targeting its 3'-untranslated region (3'UTR). After TGF-β1 exposure, miR-16-5p silencing counteracted the decreases of 16HBE cell proliferation, migration, and EMT induced by Linc00511 knockdown. And Smad3 overexpression also reversed the inhibitory effect of Linc00511 knockdown on proliferation, migration, and EMT progression in TGF-β1-induced human bronchial epithelial cells.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。