Costunolide reduces glycolysis-associated activation of hepatic stellate cells via inhibition of hexokinase-2

木香烃内酯通过抑制己糖激酶-2 降低肝星状细胞的糖酵解相关活化

阅读:5
作者:Dujing Ban, Shangbo Hua, Wen Zhang, Chao Shen, Xuehua Miao, Wensheng Liu

Background

Hepatic stellate cell (HSC) activation is a central event during hepatic fibrosis. Aerobic glycolysis is one of its metabolic hallmarks. Blocking glycolysis is a novel therapeutic option for liver fibrosis. This study investigated the effects of costunolide, a natural product demonstrated to have hepatoprotective effects, on HSC activation and glycolysis.

Conclusions

Our results show that costunolide can suppress HSC activation, and this is associated with inhibition of HK2, which blocks aerobic glycolysis. This suggests that costunolide is an antifibrotic candidate with potential for further development.

Methods

Primary HSCs were isolated from rats and cultured through 5 to 6 passages. Cell viability, activation markers, and glycolytic metabolism were examined in primary HSCs using various cellular and molecular approaches.

Results

At 30 μM, costunolide reduced the viability of HSCs and inhibited the expression of α-smooth muscle actin and collagen I, two key markers of HSC activation. It also decreased glucose uptake and consumption, and reduced the intracellular levels of lactate in HSCs. At 10 mM, the glycolysis inhibitor 2-DG had a similar impact to costunolide at 30 μM: it significantly downregulated the expression of HSC activation markers. The combination of the two compounds produced more remarkable effects. Furthermore, costunolide repressed the expression and activity of hexokinase 2 (HK2), a pivotal rate-limiting enzyme that regulates glycolysis. However, overexpression of HK2 via plasmid transfection significantly reversed the costunolide-mediated downregulation of activation markers in HSCs, indicating that suppression of HK2 was required for costunolide to inhibit glycolysis-associated HSC activation. Conclusions: Our results show that costunolide can suppress HSC activation, and this is associated with inhibition of HK2, which blocks aerobic glycolysis. This suggests that costunolide is an antifibrotic candidate with potential for further development.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。