Derepression of MicroRNA-138 Contributes to Loss of the Human Articular Chondrocyte Phenotype

MicroRNA-138 的解除抑制导致人类关节软骨细胞表型的丧失

阅读:5
作者:Christine I Seidl, Aida Martinez-Sanchez, Christopher L Murphy

Conclusion

We propose that an evolutionary pressure helps to suppress expression levels of miR-138 in human cartilage, thus enabling expression of appropriate tissue-specific matrix genes. Inhibition of miR-138 may serve as a potential therapeutic strategy to maintain the chondrocyte phenotype or reduce the progression of dedifferentiation in cultured HACs.

Methods

The expression of miR-138 in intact cartilage and cultured chondrocytes and the effects of miR-138 overexpression on chondrocyte marker genes were investigated. Targets of miR-138 relevant to chondrocytes were identified and verified by overexpression of synthetic miRNA mimics and inhibitors, luciferase assays, chromatin immunoprecipitation, and RNA immunoprecipitation of native argonaute 2, using quantitative polymerase chain reaction, Western blotting, and luciferase assays.

Objective

To investigate the function of microRNA-138 (miR-138) in human articular chondrocytes (HACs).

Results

Expression levels of miR-138 were maintained at relatively low levels in intact human cartilage but were greatly increased upon loss of the differentiated phenotype in culture, with a concomitant decrease in the major cartilage extracellular matrix component COL2A1. We showed that miR-138 is able to repress the expression of COL2A1 by directly targeting Sp-1 and hypoxia-inducible factor 2α (HIF-2α), 2 transcription factors that are essential for COL2A1 transcription. We further demonstrated a direct association of these targets with miR-138 in the RNA-induced silencing complex and confirmed binding of Sp-1 to the COL2A1 promoter region in HACs.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。