Retinal whole genome microarray analysis and early morphological changes in the optic nerves of monkeys after an intraorbital nerve irradiated injury

猴眶内神经放射损伤后视网膜全基因组微阵列分析及视神经早期形态变化

阅读:7
作者:Yong Xia, Jun Chen, Li Xiong, Jiagang Liu, Xuesong Liu, Lu Ma, Qiao Zhang, Chao You, Jing Chen, Xuyang Liu, Xiaoyu Wang, Yan Ju

Conclusions

We conclude that the current irradiated dose of 15 Gy was sufficient to lead to a radiation injury of the optic nerve and retina. Several transcripts deregulated in retinas after a radiation injury play a key role in radiation-induced neurogenic visual loss, especially for genes associated with RGC, glial cell, and cell death. Glial cells in optic nerves might be the primary target of a radiation injury in the optic nerve.

Methods

Unilateral intraorbital optic nerves of three rhesus macaques were treated by GKS with irradiated doses of 15 Gy, while contralateral optic nerves and retinas served as the control. Gene expression profiles of the control and affected retinas were analyzed with Affymetrix Rhesus Macaque Genome arrays. To verify the

Purpose

To obtain and analyze early retinal changes at the molecular level 24 h after a radiation injury to the ipsilateral intraorbital nerve using gamma knife surgery (GKS), and to examine the morphological changes in bilateral optic nerves.

Results

Of the probe sets, 1,597 (representing 1,081 genes) met the criteria for differential expression, of which 82 genes were significantly up-or down-regulated in treated retinas. There was prominent upregulation of genes associated with glial cell activation in the treated retina. Genes related to an early inflammatory reaction and to cell death were also significantly regulated in response to a radiation injury to the intraorbital optic nerve. In contrast, the messenger ribonucleic acid (mRNA) expression levels of retinal ganglion cell (RGC)-specific genes were low. Morphologically, cytoplasmic processes of astrocytes in treated nerves were shorter than those of the control and were not straight, while also being accompanied by decreased GFAP immunostaining. More oligodendrocytes and inflammatory cells were apparent in treated nerves than in the control. In addition, swollen mitochondria and slight chromation condensation could be seen in the glial cells of treated nerves. Conclusions: We conclude that the current irradiated dose of 15 Gy was sufficient to lead to a radiation injury of the optic nerve and retina. Several transcripts deregulated in retinas after a radiation injury play a key role in radiation-induced neurogenic visual loss, especially for genes associated with RGC, glial cell, and cell death. Glial cells in optic nerves might be the primary target of a radiation injury in the optic nerve.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。