Silencing rno-miR-155-5p in rat temporal lobe epilepsy model reduces pathophysiological features and cell apoptosis by activating Sestrin-3

在大鼠颞叶癫痫模型中沉默 rno-miR-155-5p 可通过激活 Sestrin-3 减少病理生理特征和细胞凋亡

阅读:6
作者:Li-Gang Huang, Jing Zou, Qin-Chi Lu

Abstract

Temporal lobe epilepsy (TLE) is a chronic neurological disease characterized by recurrent spontaneous seizures. MicroRNAs are dysregulated in various pathological conditions including epilepsy. Therefore, we hypothesized that the dysregulation of these microRNAs might also be associated with the pathogenesis of TLE. In this study, we found that a microRNA, hsa-miR-155-5p, was upregulated in patients with TLE post-surgery, and hence associated with clinical and pathological manifestations and seizure outcomes. We then used a rat model of experimental epilepsy induced by pilocarpine and revealed that the rat homologue was upregulated as well. Importantly, injection of an antagomiR of rno-miR-155-5p in vivo resulted in a reduction of the pathophysiological features associated with the status epilepticus, which was accompanied by decrease of apoptosis in the hippocampus. This effect was correlated with an increase in rat Sestrin-3 expression, which was a gene known to counteract oxidative stress. This rescue was also observed after injection of a lentivirus carrying the small interfering RNA of rat Sestrin-3 gene in the hippocampus. In addition, rno-miR-155-5p as well as rat Sestrin-3 mRNA and protein expression were partly dependent on oxidative stress induced by H2O2 in PC12 cells. Taken together, our data suggest that rno-miR-155-5p is a potent post-transcriptional regulator of rat Sestrin-3 and it may be one of the molecular links between brain damage and increased risk for seizures during damage by oxidative stress.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。