Metabolic reprogramming of human CD8+ memory T cells through loss of SIRT1

通过 SIRT1 的缺失实现人类 CD8+ 记忆 T 细胞的代谢重编程

阅读:7
作者:Mark Y Jeng, Philip A Hull, Mingjian Fei, Hye-Sook Kwon, Chia-Lin Tsou, Herb Kasler, Che-Ping Ng, David E Gordon, Jeffrey Johnson, Nevan Krogan, Eric Verdin, Melanie Ott

Abstract

The expansion of CD8+CD28- T cells, a population of terminally differentiated memory T cells, is one of the most consistent immunological changes in humans during aging. CD8+CD28- T cells are highly cytotoxic, and their frequency is linked to many age-related diseases. As they do not accumulate in mice, many of the molecular mechanisms regulating their fate and function remain unclear. In this paper, we find that human CD8+CD28- T cells, under resting conditions, have an enhanced capacity to use glycolysis, a function linked to decreased expression of the NAD+-dependent protein deacetylase SIRT1. Global gene expression profiling identified the transcription factor FoxO1 as a SIRT1 target involved in transcriptional reprogramming of CD8+CD28- T cells. FoxO1 is proteasomally degraded in SIRT1-deficient CD8+CD28- T cells, and inhibiting its activity in resting CD8+CD28+ T cells enhanced glycolytic capacity and granzyme B production as in CD8+CD28- T cells. These data identify the evolutionarily conserved SIRT1-FoxO1 axis as a regulator of resting CD8+ memory T cell metabolism and activity in humans.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。