TAxI-peptide targeted Cas12a ribonuclease protein nanoformulations increase genome editing in hippocampal neurons

TAxI 肽靶向 Cas12a 核糖核酸酶蛋白纳米制剂可增强海马神经元的基因组编辑

阅读:5
作者:Drew L Sellers, Kunwoo Lee, Niren Murthy, Suzie H Pun

Abstract

Gene therapy approaches that utilize Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) ribonucleases have tremendous potential to treat human disease. However, CRISPR therapies delivered by integrating viral vectors are limited by potential off-target genome editing caused by constitutive activation of ribonuclease functions. Thus, biomaterial formulations are being used for the delivery of purified CRISPR components to increase the efficiency and safety of genome editing approaches. We previously demonstrated that a novel peptide identified by phage display, TAxI-peptide, mediates delivery of recombinant proteins into neurons. In this report we utilized NeutrAvidin protein to formulate neuron-targeted genome-editing nanoparticles. Cas12a ribonucleases was loaded with biotinylated guide RNA and biotinylated TAxI-peptide onto NeutrAvidin protein to coordinate the formation a targeted ribonuclease protein (RNP) complex. TAxI-RNP complexes are polydisperse with a 14.3 nm radius. The nanoparticles are stable after formulation and show good stability in the presence of normal mouse serum. TAxI-RNP nanoparticles increased neuronal delivery of Cas12a in reporter mice, resulting in induced tdTomato expression after direct injection into the dentate gyrus of the hippocampus. TAxI-RNP nanoparticles also increased genome editing efficacy in hippocampal neurons versus glia. These studies demonstrate the ability to assemble RNP nanoformulations with NeutrAvidin by binding biotinylated peptides and gRNA-loaded Cas12a ribonucleases into protein nanoparticles that target CRISPR delivery to specific cell-types in vivo. The potential to deliver CRISPR nanoparticles to specific cell-types and control off-target delivery to further reduce deleterious genome editing is essential for the creation of viable therapies to treat nervous system disease.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。