The molecular mechanism underlying GABAergic dysfunction in nucleus accumbens of depression-like behaviours in mice

小鼠伏隔核中 GABA 能功能障碍与抑郁样行为的分子机制

阅读:9
作者:Ke Ma, Hongxiu Zhang, Shiyuan Wang, Huaxin Wang, Yuan Wang, Juhai Liu, Xiaobin Song, Zhenfei Dong, Xiaochun Han, Yanan Zhang, Honglei Li, Abdul Rahaman, Shijun Wang, Zulqarnain Baloch

Abstract

Depression is the most frequent psychiatric disorder in the world. Recent evidence has shown that stress-induced GABAergic dysfunction in the nucleus accumbens (NAc) contributed to the pathophysiology of depression. However, the molecular mechanisms underlying these pathological changes remain unclear. In this study, mice were constantly treated with the chronic unpredictable mild stress (CUMS) till showing depression-like behaviours expression. GABA synthesis, release and uptake in the NAc tissue were assessed by analysing the expression level of genes and proteins of Gad-1, VGAT and GAT-3 by qRT-PCR and Western blotting. The miRNA/mRNA network regulating GABA was constructed based on the bioinformatics prediction software and further validated by dual-luciferase reporter assay in vitro and qRT-PCR in vivo, respectively. Our results showed that the expression level of GAT-3, Gad-1 and VGAT mRNA and protein significantly decreased in the NAc tissue from CUMS-induced depression-like mice than that of control mice. However, miRNA-144-3p, miRNA-879-5p, miR-15b-5p and miRNA-582-5p that directly down-regulated the expression of Gad-1, VGAT and GAT-3 were increased. In the mRNA/miRNA regulatory GABA network, Gad-1 and VGAT were directly regulated by binding seed sequence of miR-144-3p, and miR-15b-5p, miR-879-5p could be served negative post-regulators by binding to the different sites of VGAT 3'-UTR. Chronic stress causes the impaired GABA synthesis, release and uptake by up-regulating miRNAs and down-regulating mRNAs and proteins, which may reveal the molecular mechanisms for the decreased GABA concentrations in the NAc tissue of CUMS-induced depression.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。